LEGO P-brick Script code language
Draft 2000.03.28/ELEC

LEGO P-brick
Script Code Language

©2000 LEGO Company Page 1 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

Table of contents

1 LEGOP-brick Scri Pt COOE SPECTTICALIONeeveereereiet ettt 3
L1 ProOgram SIEUCLUI B ssssessssssesssnnssssssns 3
L2 IMACIOS ...t 6
1.3 CONLIOl SEFUCTUN ES..courieveeeiiiseessssscssssssss s sssssssssssssss s sssssss s ss s ss s 7
1.4 EVENtS AN @VENT SELLINGS ..o ereeessssssssssssssse s sssssss s sss s ssssssss s ssssnns 7
L5 ACCESS CONLI Oooooeeeee et 1
LB SENSONS ...ttt 12
L7 MOLOE CONEEOL.......ooooooieseeceseeeeceeeesss s 13
1.8 SOUNA CONEIOooooo st 15
1.9 SOft FESOUNCE CONLI Ol ...t ssssessssss s ssssss s 15
1.10 Direct only commands (Not downloadable)vvcciieneeeeeseeeeiissssesseeessesssssssssssessesssssssssseens 16
111 Configuration COMMEANTS.............coorrrviiieeeeeriissesess s sssssss s sssssssssssssss s sssss s sssss s essssssses 17
112 DECIAIALIONSoooouieeneeceeeeeeisssss s seeeessesesssssss s ssssssss s 17
113 L AYOUL BNO COMIMIEIIES ...ooovuuuuuummmmmmmmmssssssmsssssssssssssssssssss s 5555555555550 19
114 COMPUEr IFECHIVES...........oooceieeeeeeeeeeeveessssss e sssssnens 19
115 SAMIPIE PIOGEAIMIS.....eeeeeeeeeessseeeeeeeeeeessssss s ssssssssss s 19

©2000 LEGO Company Page 2 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

1 LEGO P-brick Script code specification

LEGO P-brick Script will be used as the implementation language for the graphical programming environment to be
provided as part of the RIS2.0 Set, to implement other graphical environments and as a starting point for future scripting
languages. It will be based upon the graphical programming paradigm that has evolved from RIS and stand-alone Scout
design: Sequential execution of a main program stack, together with watchers that continuously monitor events and react to
these events by executing additional stacks in parallel with the main stack. Conflicts on access to shared resources can be
resolved using the priority based access control system.

1.1 Program structures

A LEGO Rbrick Script program consists of an optional main stack, named event watchers and/or named or numbered tasks,
together with macro definitions. Watchers monitor one or more system or user defined events, and execute a stack when an
event isreceived. Tasks contain a stack and can be started and stopped from other stacks.

Watchers can be declared so that, once stack execution has been triggered, the stack runs to completion (the default) even if
other events monitored within the same watcher are detected. Or stack execution can be interrupted (and restarted) when an
event in the watcher eventlist occurs. If atriggered watcher stack runsto completion, events may be missed.

Watchers and tasks are named (or numbered) so they can be started and stopped. Initially all watchers and tasks are stopped.
Once started, a watcher can be level triggered using the trigger command. The trigger command fires selected events if the
immediate value of the event source satisfies the condition of the event. The fire command can be used to generate an event
(user or system) or list of eventsimmediately.

Each event watcher will be implemented as a task. If there are any user defined events, a dispatcher task will be allocated to
continuously monitor event source values. The dispatcher task will fire these as system events, so the watcher task code will
beidentical for user and system events. Program example:

program MyProgram {
#i ncl ude <MyMacr os. h> /'l contains macro definitions

sensor |eftTouch on 1
sensor Opto on 2
sensor rightTouch on 3

| eft Touch is switch as bool ean
Opto is light as percent
ri ght Touch is switch as bool ean

event gl oonmy when Opto is 0..20 /1 dispatch | oop events
event dull when Opto is 30..40

event intense when Opto is 80..100

event |eftPressed when | eftTouch. pressed /1l system events
event rightPressed when right Touch. pressed

mai n {
start feel erWatcher
start |ightWatcher
start MyTask

trigger gloony, dull, intense /1 initial level triggering
}
watcher feelerWatcher monitor |eftPressed, rightPressed {

if leftPressed {avoi dRi ght} /1 call to macro

if rightPressed {avoidLeft}
}

©2000 LEGO Company Page 3 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

wat cher |ightWatcher nonitor gloony, dull, intense {
i f gloony {stack}
if dull {stack}
if intense {stack}
} restart on event /'l sensor events will re-trigger the
/1 watcher during execution

task MyTask {
st ack

}
}

Globa & loca declarations, and scope

Global variables, timers and counters must be declared before the main block. Any initialization of global variables will be
placed at the start of the main task. Local variables can only be declared within the main block, watchers, tasks and macros.
Macro formal parameter names are treated as local variable declarations. Constants (including sensor and output port
assignments) can be placed before the main block, or at the beginning of the main, watcher, task or macro blocks. Usually
these declarations will be included as headers at the start of the program.

Globa variables are allocated from Rbrick global variables. Local variables declared within main, watchers, tasks, macros,
or asmacro formal parameters, are allocated from task specific local variables.

Local declarations of variables (in main, watchers, tasks or macros) hide globals with the same name:

program testVars {
sensor left on 1
sensor right on 2
event | eftPressed when |eft. pressed
event rightPressed when right. pressed
var y = 100
macro ping(y) {
tone y for 10
}
macro pong {
local y = 110
tone y for 10
}
mai n {
Il ocal y = 220
tone y for 100 wait 100
pi ng(660) wait 50 pong
start beep start bop
}
wat cher beep nonitor |eftPressed {
|l ocal y = 440
tone y for 50
}
wat cher bop nonitor rightPressed {
Il ocal y = 880
tone y for 50
}
}

Local variables cannot be declared or used in immediate commands, So expressions requiring temporary variables cannot be
evaluated. For example:

sensor opto on 3
var v = (10 * (1020 - opto.raw)) / 102
get v [//lillegal

©2000 LEGO Company Page 4 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

But you can hand-code the same expression using globals:

sensor opto on 3
var v = opto.raw

v *= -1
v += 1020
v *= 10
v /= 102

getv //getlight %

Program structures are:

program programane { program body }

Inside the program body we have compiler directives and declarations followed by:

macro macronane (paraneterlist) { conmand stack }

main { command stack }

wat cher wat chername nonitor eventlist { command stack } [restart on event]
task taskname { command stack }

fragnent (x, y) { command stack }

comment (x, y) “Any literal string all on one line”

f ragnment isused to frame a floating group of blocks in agraphical programming environment. (X, y) gives the position of
the floating stack.

coment is used to insert floating comment posters in a graphical programming environment. (X, y) gives the upper left
corner of the poster square. Inside the double quotes any string will go.

Ir Carriagereturn
/n New line

/'t Tab

/I Double quotes

Watchers, tasks and main are started and stopped (main is also started and stopped when you press the RUN button):

start wat cher nane
st op wat cher nane

start taskname
stop tasknane

start main

stop nmain
event|i st Comma separated |ist of naned events
paraneterli st Comma separated |list of the paraneters of the macro

To stop all tasks from running use:

stop tasks

©2000 LEGO Company Page 5 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

1.2 Macros
macro nmacronane (paraneterlist) { conmands }

paraneterli st Comma separated |list of the paraneters of the macro

Macros are called by name.

Macros can be downloaded to RAM subroutines or the macro code can be expanded inline. The compiler will optimize to
reduce code size. Example:

program fl ashBeep {
var note = 50
macro flash(tinmes, freq) {
repeat times {tone freq for 10}

}
macro beeps {sound 3 sound 5 sound 1}
mai n {
forever {flash(2, note) beeps note += 5}
}

}

The compiler could decide to implement the *flash’ macro as a subroutine if it is used in several places. The 'beeps macro
might be better inline.

Thereis atrade-off between the need to initialize local variables before calling subroutines, and the inline code size.

The compiler will need to take care with macro parameters that are, for example, sensor values, when implementing macros
inline.

Y ou can call another macro from within amacro. A macro cannot call itself.
If you want to use port assigned resources inside a macro, these should be passed in the parameter list:
program GoForLi ght {

output Aon 1
output B on 3
sensor Opto on 3

macro GolLi ght(nLeft, nRight, nLight) {
if nLight.raw < 700
{fd [nLeft nRight]}
el se {bk [nLeft nRight]}
on [nLeft nRight] for 100

}
mai n {
forever {
GoLight (A, B, Opto)
wait 100
}
}

©2000 LEGO Company Page 6 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

1.3 Control structures

if value relop value { commands } [else { commands }]
if value is [not] range { commands } [else { commands }]
sel ect val ue {

when val 1 { Conmands }

when val 2 { Commands }

when val N { Commands }
[else { Conmands }] }
whi |l e value rel op value { commands }
while value is [not] range { conmands }
repeat repeatnunber|randoma [to b] { commands }
repeat { conmands } until eventli st
forever { conmands }
wait time|randomtinel [to tinme2]
wait until eventli st

val ue Nunmber, constant, variable, sensor, timer, counter,
nmessage, property

val 1-val N Nunmber, constant or range

rel op = or < or > or <>

r epeat nunber Nunber or constant

range vl..v2 vN is nunber, constant or variable

time Nunmber, constant, variable

eventli st Comma separated list of naned events

Random areturns arandom number from 0 to aboth inclusive.
Random ato b returns arandom number from ato b both inclusive.

The | f structure evaluates a condition once. If the result is true, the commands in the first list are executed. If the result is
false and thereisanel se list of commands, they are executed.

The sel ect when structure compares the specified value with a series of constant numbers or ranges. The first condition
to mach is executed. If none of them match an optional el se part can be executed.

The whi | e structure repeatedly evaluates a condition until it is false. While the result is true, the commands in the list are
executed.

Ther epeat structure repeats commandsfor the specified number of times.
Thef or ever structure repeats the command block forever.

For explanation of control structures using events se Section 1.4.

1.4 Eventsand event settings

fire eventli st

trigger eventli st

moni tor eventlist { commands } [retry, abort, restart, stop] on event

repeat { conmands } until eventli st

wait until eventli st

if eventlist { commands } [else { commands }] // Only inside watcher stack

calibrate (eventnane)

©2000 LEGO Company Page 7 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

event nane
eventli st

Literal al phanuneric nane for an event
Comma separated |list of naned events

Events are declared with a name and a condition or alink to a system event before use:
event | eftPressed when | eft Touch. pressed

event bright when opto is 80..100

System events are properties of declared event sources:

var Score = 0

event EndGame when Score. hi gh
wat cher W nner nonitor EndGame {sound 1 Score = 0}

In the table bellow alist is given of the system event sources with their events and values.

Declaration Events Values (read only)
sensor <name>on<1|2]|3> pressed, released type(1,5,60r7)
<name> is switch asraw, boolean, | low, normal, high raw (0-1023)
transition, periodic click, doubleclick value (mode dep.)
sensor <name>on<1|2|3> pressed, released type (2)
<name> is temperature asraw, low, normal, high raw (0-1023)
celsius, fahrenheit click, doubleclick value (mode dep.)
sensor <name>on<1|2|3> pressed, released type (3)
<name> islight as raw, percent low, normal, high raw (0-1023)
click, doubleclick value (mode dep.)
sensor <name>on<1|2|3> pressed, released type (4)
<name> isrotation asangle low, normal, high raw (0-1023)
click, doubleclick value (-32768 to 32767)
timer <name> pressed, released value (0-32767)
low, normal, high
counter <name> pressed, released value (-32768 to 32767)
low, normal, high
click, doubleclick
var <name> pressed, released value (-32768 to 32767)
low, normal, high
click, doubleclick
PB Message message value (0-255)
(no declaration required) pressed, released
low, normal, high
click, doubleclick

Source/Event combinations are addressed by adot notation: <SourceName>.<EventType>.

For PB Messages the predeclared message event is thrown every time a message is received. The other event types are
addressed by message.<EventType>.

Not all combinations of event sources and events might make perfect sense, but they are available.
A named event has a set of properties, addressed by <EventName>.<EventProperty>

Propertiesare: low, high, hysteresis

time
state

©2000 LEGO Company Page 8 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

In general each event has three areas. Low, Normal and High . These three areas are defined by the low and high threshold
properties:

L ow threshold High threshold

Low area Normal area High area

An undefined area, is active at startup.

Depending on the area where the value of an event source islocated, the state property of the event will be either low,
normal, high or undefined (0, 1, 2, 3 respectively).

State transitions are generated using the low- and high threshol ds together with the hysteresis. The conditions for state
transitions are as shown bellow.
If (UT <LT + H) the event state will be undefined. If later (UT >= LT + H) state transitions from undefined can take place.

Current State Condition New State
High Vaue<LT Low
Vadue<=UT-H Normal
Normal Vaue>UT High
Vaue<LT Low
Low Vaue>UT High
Vaue>=LT+H Normal
Undefined Vaue>UT High
Vdue<LT Low
Else Normal

For the message event the state will be undefined whenever the mailbox is empty (message = 0).

Event source value

ut
UT-H

LT +H
LT /—

EventState

Normal High Normal Low Normal

Events are generated on state transitions:

Events State transitions

Low High, Normal or Undefined to Low
Normal High, Low or Undefined to Normal
High Low, Normal or Undefined to High

Click and double click events are defined from a sequence of certain state changes:

©2000 LEGO Company Page 9 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

Events State transitions
Click A transition into High area and back again
Doubleclick Two consecutive Clicks

The figure below shows the different ways of generating a Click event.

EventValue

Low

For the click to be accepted the value of At hasto be between 50ms and 50ms + ClickTime, where ClickTime is set through
the time property of the named event (for light blinks areasonable value for ClickTime is 150 ms).

A doubleclick istwo consecutive clicks with At in between.
Pressed and released events are generated using fixed 45%/55% limits.
An eventlist is a comma separated list of named events, used within a watcher, monitor, sound feedback, fire or trigger

commands.

Examples of the use of eventlists:

sound when | eft Pressed, bright // enabl e sound feedback on |isted events
fire leftPressed, bright /[lthrows listed events
trigger |eftPressed, bright /lthrows events if event source val ue

/lsatisfy event condition
The fire eventlist commandwill immediately throw the events given in the eventlist.

The trigger eventlist command will test the condition for each event in the eventlist and throw events if the
condition istrue.

The monitor eventlist structureis used to define a code section inside which the operating system of the p-brick
will monitor the given list of events. If one of the events in the list happens while executing inside this section the section
will be exited and execution will continue in one of 4 different places:

retry onevent Resume at beginning of monitor section
abort onevent Resume at end of monitor section
restart on event Go to beginning of stack

stoponevent Go to end of stack

Examples:

/1 beep until |ight goes | ow
nmoni tor |ightLow {forever {sound 1 wait 10}} abort on event

/[l retry block if switch pressed
monitor leftPressed {on C wait 100 off C} retry on event

©2000 LEGO Company Page 10 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

The wait until eventli st structureisanempty monitor that abortson event.

Therepeat until eventli st structureisarepeat forever loop inside a monitor that aborts on event.

You cannot nest monitors (remember that wait- and repeat until are also monitors). If you place a try block within a
monitor, the only fail options allowed are retry and abort (you cannot use restart or stop):

moni tor | eftPressed {
forever {try {on A wait 10 off A wait 10} retry on fail}
} abort on event

repeat {
try {on B wait 10 off B wait 10} retry on fail
} until bright
Inside awatcher you can test on a subset of the watcher events:
wat cher MyWat cher nonitor |eftPressed, rightPressed {

if leftPressed {tone 1000 for 100}
if rightPressed {tone 2000 for 100}

}
15 Accesscontrol
priority prt
try { conmands } [retry, abort, restart, stop] on fail
prt Nunmber or constant (1-8, 1: High priority)
The try structure is used to define a code section inside which the operating system of the p-brick will perform priority

based access control on some of the critical resources used inside the section. These resources are: Motors, sound and VLL.

The compiler will automatically scan each try-block and generate a list of used output resources. If the block does not use
any resources, no access control code is going to be generated. The priority can be set at any time.

If acritical section fails to acquire requested resources, or loses resources before completion, the section fails and aborts.
Execution continuesin one of 4 places:

retry on fall Resume at beginning of try section (thustry to get accessto resources again and redo section)
abort on fail Resume at end of try section (don’t bother to finish the section, just abort and go on)
restart on fail Go to beginning of stack (restart the entire stack)
stop on fail Goto end of stack (abort the entire stack (in a Watcher you will return to monitoring for events))
Examples:
mai n {
priority 6
sound 1
try {on Cwait 10 off C} retry on fail // retries block until it conpletes
sound 2
}
mai n {

©2000 LEGO Company Page 11 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC
priority 6
sound 1
try {on C wait 10 off C} abort on fail // skip block if try block fails
sound 2

}

mai n {
priority 6
sound 1
try {on Cwait 10 off C} stop on fail /1l stop executing main if try block
/1 fails
sound 2

}

mai n {
priority 6
sound 1
try {on Cwait 10 off C} restart on fail /[l start main again if try block
/1 fails
sound 2

Try blocks can be used anywhere a command can be used within a stack. Try blocks can therefore be used within other
control structures. Using atry block within awatcher stack allows the watcher to immediately continue monitoring events if
thetry block execution fails with stop (or restart). This example gives up (using stop) if it cannot turn output 1 on, and starts
monitoring events again immediately:

wat cher buttonWatcher nonitor |eftPressed {
try {on A wait 10} stop on fail
try {off A} abort on fail
sound 2

Y ou cannot nest try blocks. If you place a monitor block within atry block, the only event options allowed are retry and
abort (you cannot use restart or stop).

16 Sensors

Sensors must be declared by name (thus associated with a specific input port) and assigned a type and mode before the
value of a sensor can be accessed (se Section 1.12). Once declared, sensors are always referred to by name. They can be
cleared, calibrated and the sensor values can be read:

sensor sensornanme on port

sensor name literal al phanuneric nane for a sensor
port nunmber (1, 2 or 3 for RCX input ports)

sensornanme is type
sensor nanme as node
sensorname is type as node

type Unknown, switch, tenperature, light, rotation

nmode raw, bool ean, transition, periodic, percent
cel sius, fahrenheit, angle

Sensor commands are:

©2000 LEGO Company Page 12 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

cl ear sensornane /1l Clear the sensor value (used in transition and
/1 period counter node) and for rotation sensor
cal i brate (sensornane) /1l Auto set the high, |ow and hysteresis pro-
/1 perties of the events that uses this sensor as
/'l source

Once a sensor is declared by name and assigned to an input port you access the val ues of the sensor as properties:

Var = Opto /'l Loads processed value of Opto into Var
Var = Opto.raw /1l Loads raw value of Opto into Var
Var = | eft Touch. type /1l Loads the type of |eftTouch into Var

/1l For a touch sensor this could be the ID
The processed value can be of various sorts depending on sensor type and mode.
The raw property givesthe AD converted val ue of the sensor.

The type property holds the type of the sensor. For a switch type this would be the ID of the switch.

There are four types of sensors:

- Switch A passive resistance sensor
- Temperature A passive resistance sensor
- Light An active current sensor

- Rotation An active gray-code sensor

For each sensor type there are several modes:

- Raw The AD-converter value (0-1023)
- Boolean 0 or 1 based on fixed 45%/55% thresholds
- Transition Countsboolean transitions (0to 1 or 1to 0)

- Periodic Counts boolean periods (0-1-0 or 1-0-1)

- Percent Convertsthe raw value to a 0-100% representation

- Celsius Convertsaraw valueinto degrees celsius

- Fahrenheit Convertsaraw value into degrees fahrenheit

- Angle Converts the gray-code scal e of the rotation sensor into increments or decrements

(depending on direction) £16 counts per revolution
Depending on the sensor mode a sensor value is cal cul ated.
E.g.
SensorType: Switch
SensorMode: Boolean
SensorValue: If switch ispressed:1, if switch isreleased: O.
SensorType: Light

SensorMode : Percent
SensorValue: 0-100 giving light valuein percent

For adescription on the use of sensors as event sources: Se Section 1.4.

1.7 Motor control

Motors must be named before they can be controlled, because they must be associated with a specific output port (se
Section 1.12). Once declared, motors are always referred to by name. They can be controlled individually or in alist,ina

©2000 LEGO Company Page 13 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

“task local” manner or by using the global motor control settings. For each motor you can read the status or the power
setting.

out put name on port

name literal al phanuneric nanme
port nunmber (1, 2 or 3 for RCX output ports A, B and C)
Example:

out put notorA on 1

Motor control commands are:

on ports

on ports for time|randomtl [to t2]
of f ports

float ports

forward ports

fd ports /1 Short form of forward

backward ports

bk ports /1 Short form of backward

direction fdports, bkports /1 Conbi ned forward and backward command
dir fdports, bkports /1 Short formof direction

reverse ports
power ports pwr|randompwl [to pw 2]

In addition to commands which directly control motors (on, off, fd, bk, float, reverse, power), it is possible to control global
motor settings viathe following commands:

gl obal forward ports

gl obal backward ports

gl obal direction fdports, bkports

gl obal reverse ports

gl obal on ports

gl obal off ports

gl obal float ports

gl obal power ports pwr|randompwl [to pw 2]

ports Naned out put e.g. nmotorA
Li st of ports e.g. [notorA notorB]
tinme Constant giving on time in 0.01 seconds
pwr Constant or variable giving power |evel (1-8)

The "on Ports for Value" command is exactly the same as "on Ports wait Value off Ports'. Forward and backward set the
output polarity; reverse togglesit. Power, forward, backward and reverse do not change the state (i.e. on, off or float) of the
outputs.

Examples:
power [notorA nmotorC|] 8

on [motorA notorC] for random 100 to 200
gl obal off [notorA notorC]

To get the current status of an output port use the status property of the port:

©2000 LEGO Company Page 14 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

MyVar = MotorA. status
The format of the Output status register is given below:

Output Status Register
7 6 5 4 3 2 1 0

I— Power 0-7
Direction 0: Rwd, 1: Fwd

Output No.
1: Break, O: Float
1: On, 0: Off
The direction bit is only used when the output is On.
The break/float bit is only used when the output is Off.
To get the power setting explicitly use:
MyVar = Mot or A. power
1.8 Sound contral
sound on
sound of f
sound soundnumber
tone freq for tine
cl ear sound /1 flushes the sound buffer
event|i st Comma separated |ist of nanmed events
soundnunber Constant giving System sound nunber
freq Constant or variable giving tone frequency (1-20000)
tinme Literal expression giving tone duration in 0.01 seconds up to

2.55 sec.

19 Soft resource control
Variables

Variables are declared by name as global or local and can optionally be initialized with avalue:

var nane {= val ue} /1 Allocates a global variable
| ocal nanme {= val ue} /1l Allocates a |ocal variable
name literal al phanuneric nane

val ue constant or nunber

Set variables

Y ou can load avariable with the value of any other operand type or arandom number.

clear Variablel /1 Set Variablel to zero
Variablel = Opto.raw

Vari abl e2 = Vari abl ell

Vari abl e3 = random 10 to 16

©2000 LEGO Company Page 15 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

Math on variables

Y ou can use the usual range of arithmetic (+ - * /) and logic (& |) operatorsin an expression. Round brackets should be used

to make the order of evaluation clear. The compiler will allocate anonymous variables on aper-task basis for use within
each expression; once allocated these are reused within each task.

Assignment operators can also be used: +=, -=, *=, /=, &= and |=. These are especially efficient, as no temporary variables
arerequired.
Variabl el = (Variable2 + 45)*5

Vari abl el = Vari abl e2 & Ox7F
Variablel += 1

Var = abs (expression) // Returns absol ute val ue of expression

Var = sgn (expression) //Returns -1 if expression is negative, 1 if
/I positive

Devision by 0 leaves the operand unchanged and abs (-32768) returns 32767.

Timers

clear Tinerl

Counters
clear Counterl

Y ou can do math on counters just like on variables.

M ailbox control

send pbnessage /1 fromPBrick or froma tower
cl ear nmessage

pbnessage Constant or variable (1-255)

Datalog control

clear data | ogsize /1 allocates and clears a nenory bl ock for datal og
| og name /'l stores a snapshot of named value in the datal og
get data startadr, count /1l returns |ogged data (direct conmand only)

| ogsi ze nunber of bytes in datal og nmenory area

namne literal al phanuneric nane

startadr start address of block to upload

count nunber of bytes to upl oad

1.10 Direct only commands (not downloadable)

Getting information:

brick alive? // returns 1 if brick is alive, otherwise 0
brick version? /1 returns string containing ROM and Firnmnare

©2000 LEGO Company Page 16 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

/1 version

brick battery? /1l returns battery voltage in mlliVolts

get map /1l returns the nmenory map of the brick

get startadr, count /1 returns a block of values from brick nmenory
get data startadr, count /1l returns |ogged data (direct conmand only)
startadr start address of block to upload

count nunber of bytes to upl oad

Emulating the remote-control:

renote renotecode /1l send out a renmpte control code fromtower
r enot ecode Renpt e code bit-mask (se rel evant docunentati on)

Deeting Tasks and Subroutines:

cl ear tasks /1l delete all tasks

clear task n /1 delete a task

cl ear subs /1 delete all subroutines

clear sub n /1 delete a subroutine

n Task or Sub nunber

1.11 Configuration commands

sl ot sl ot nunber /1l select programslot n (RCX: 1..5)

boot rom /1 put RCX in boot nobde ready to receive firmare

boot firmare /1 unlocks the firmware

sl eep /1 turn off PBrick now

clear sleep /'l resets the PBricks sleep tiner

sl eep after timeout /1 turn off PBrick after t mnutes

randomni ze /'l re-seeds the random nunber generator

di spl ay nane[:decpoint] // selects a value to continuously nmonitor on the LCD
wat ch hh: mm /1l set internal PBrick watch

brick tx power pwlevel // set PBrick transmtter power (RCX: 0 or 1)

sl ot number programslot 1 to 5

ti meout 0 neans never, 1-255 are m nutes

name literal al phanuneric name for a val ue

decpoi nt sel ection of decimal point O0: none to 3: 3 decimals
hh: mm hours and m nutes 00: 00 to 23:59

pwr | evel IR transmitter level 0: low or 1. high

1.12 Declarations

const name = val ue
var nane [= val ue] /1 Allocates a global variable
| ocal name [= val ue] /1l Allocates a |local variable
out put name on port

name literal al phanuneric nane
port nunber (1, 2 or 3 for RCX input- or output ports)
val ue constant or number

©2000 LEGO Company Page 17 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

sensor sensornanme on port
sensorname is type
sensornanme as node
sensornanme is type as node

sensor nane literal al phanuneric name for a sensor
type Unknown, switch, tenperature, light, rotation
node raw, bool ean, transition, periodic, percent

cel sius, fahrenheit, angle

ti mer nane
counter nanme [= val ue]

Declaration of events:

event name when eventsource[.event nane]
event name when val ue rel op val ue
event name when value is [not] range

event source Any source of a system event

event name A valid eventnanme for the given eventsource

val ue Const ant, named variable, sensor, timer, counter, nunber,
nmessage

rel op = or < or >or <>

range vl..v2 vN is nunber, constant or variable

Examples: event Ti meout when timer1. high

event Detection when varProximty > 20
event Bright when Opto is 80..100

All declarations (except local of cause) are global. Reserved words cannot be used for names. Constant declarations can be
used to make programs more readable (by providing meaningful names), and also to make it easier to alter program
behavior (if their values are used in different places in the program).

Once resources are declared they are used by name reference. Program example:

program MyProgram {

/'l Decl arations

const st_Light = 3

const sm Percent = 4
const LightThreshold = 55
const MyLimt 50

const MyDel ay 10

output Aon 1

sensor Opto on 3

Opto is st_Light as sm Percent
timer MyTi mer

mai n {

while Opto < LightThreshold { }
clear MyTi ner
while MyTiner < MLimt { on A wait MyDelay off A wait MyDelay }
}

©2000 LEGO Company Page 18 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

1.13 Layout and comments

White space, comments & case are ignored.
Multi-line comments (or comments within code) start with /* and end with */.
Single line comments start with // - everything up to the end of lineisignored.

Example:

/1 This is a single Iine comrent
mai n {
repeat /* this is a short coment */ 2 { // this is ignored
sound 3 wait 100
/* This conment extends
over two lines */

}
}

The conment structureis used to insert floating comment postersin agraphical programming environment. (X, y) gives the
upper left corner of the poster square. Inside the double quotes any stringwill go.

comment (x, y) “Any literal string all on one line”

/r Carriagereturn
/'n New line

/'t Tab

/" Double quotes

1.14 Compiler directives
Directives for the compiler are (Description will be given):

#i ncl ude <fil ename>

1.15 Sampleprograms

This programisto be used with the RCX 2.0:

program Avoi der {
#i ncl ude <RCX2. h>
#i ncl ude <RCX2M.T. h>

const BACKTI ME
const TURNTI ME
const DANCETI ME
const AVODLIMT
const TI CKTI ME

100 // 1 second

50 // 0.5 second

10 // 0.1 second

4 /1 5 strikes and you’'re out
10 // 1 second

sensor LeftTouch on 1
sensor Ri ght Touch on 3
timer Tinmerl

count er Avoi dCount

event LeftPressed when LeftTouch. pressed

event Ri ght Pressed when Ri ght Touch. pressed
event Dont BugMe when Avoi dCount > AVODLIMT
event Tick when Timerl = TI CKTI ME

©2000 LEGO Company Page 19 of 20

LEGO P-brick Script code language
Draft 2000.03.28/ELEC

mai n {
bbs_d obal Reset ([A B (C])
priority 8
clear timerl
start Heartbeat
start Avoi dTouch
start TooMich
di spl ay Avoi dCount
try {
forever { bb_Forward(A, C, 1000) }
} retry on fail

}
wat cher Avoi dTouch nmonitor |eftPressed, rightPressed {
priority 3
try {
Avoi dCount += 1
sound 3
if leftPressed {
bb_Backward (A, C, BACKTI ME)
bb_SpinLeft (A, C, TURNTI ME)
} else {
bb_Backward (A, C, BACKTI ME)
bb_Spi nRi ght (A, C, TURNTI ME)

}

} stop on fai
} restart on event

wat cher TooMiuch nonitor Dont BugMe {
priority 2
try {
sound 6
sound 6
bb_Dance(A, C, 1, DANCETI ME)
cl ear Avoi dCount
} stop on fai
} restart on event

wat cher Heartbeat nonitor tick {

priority 7
clear Tinmerl
try {

tone 36 for 5 wait 10 tone 36 for 5
} abort on fail
} restart on event

©2000 LEGO Company Page 20 of 20

